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COMPONENTS OF MAXIMAL DIMENSION
IN THE NOETHER-LEFSCHETZ LOCUS

MARK L. GREEN

We will work over C. Let

Y = {algebraic surfaces of degree d in P3},
Lqa={S €Y | S smooth and Pic(S) is not generated
by the hyperplane bundle}.

We will call ¥4 the Noether-Lefschetz locus. Some things that are known
about ¥4 are:

(1) %4 has countably many irreducible components,

(2) For any irreducible component ¥ of 4,

d-3<Codim¥ < (dgl)

The upper bound on codim 4 is elementary, as this is just h%:0(S) (see
[2]). The lower bound is more subtle and depends on fairly delicate algebraic
considerations (see [4], {5]). One cannot do better for any d > 3, since the
family £9 of surfaces of degree d containing a line has codimension exactly
d—3inY. For d = 4, the upper and lower bounds given in (2) coincide, so
that every irreducible component of ¥; has codimension one. For higher d,
the following result was conjectured in [2]:

Theorem 1. For d > b5, the only irreducible component of X4 having
codimension d — 3 i3 the family of surfaces of degree d containing a line.

It should be noted that Theorem 1 was obtained independently by Claire
Voisin [7].

Let ¥ be an irreducible component of ¥; having codimension d — 3. As
shown in [5], if S = {F = 0} belongs to £, and Ji(F) is the degree k piece of
the Jacobi ideal of F', generated by the first partials Fy, Fi, 3, F3 of F, then:
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There exists a codimension (d — 3) linear subspace W C H°(Ops(d)) such
that
W2 Jd(F)a

and

(4) The multiplication map W @ H°(Ops(d— 4)) — HO%(Op3(2d—4))
is not surjective.

(5) The projection of W into HO(Ops(d))/J4(F) is the Zariski
tangent space to ¥ at S.

We now introduce some notation. Given a linear subspace W C H°(Op-(d))
we let ui denote the multiplication map

W ® H°(Op-(k)) 55 H°(Op-(d + k)),

and cx = codim(im u). We need the following algebraic result.
Theorem 2. Let W C H%(Op-(d)) be a base-point free linear subspace
of codimenston c. If ¢ <d and c.—1 # 0, then:

(6) for0<k<c, cpx=c—k;

() ifr>2andd>c>?2, then W 2 Iy(L) for some L C P".
Proof of Theorem 2. Tt was known to Macaulay (see [3], also 1], [6]) that
for any W C H%(Op-(d)) of codimension c, if we write ¢ uniquely in the form

®) c= (];d)+<§d:11)+---+<k;)+k1, (0< ks <ky < - < ka),

where by convention ( 7’:1) = 0 for m > n, then the image of the multiblication
map W ® H°(Op-(1)) 3 HO(Op-(d + 1)) has codim(im p;) < ¢(ay, Where

_ kg+1 kg1 +1 ky + 1)
(9) C(d)—(d+l)+( d )+ +( 2 )

Furthermore, it was shown by Gotzmann [3] that if equallity holds, then
codim(im px) = (- - ((e(ay)a+1)) -+ Jiarh—1)-
If ¢ < d, then

kg =dkg_1=d~1, kg_cr1=d—c+1,
kg—e=d—c—-1,--- kg=1,k =0.

Thus
_{d+1 d—c+2Y\ _
“d = (d+1)+”'+<d—c+2> =
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By Gotzma.nﬁ’s result, if equality holds, then the image of
W ® H°(Op- (k) & H°(Op-(d+ k)

always has codimension ¢. However, if W is base-point free, then ui is
surjective for & sufficiently large. Proceeding inductively, if we let ¢z =
codim(im pg), then ¢ > ¢; > ¢co > -+ for W base-point free and ¢ < d.
Since by hypothesis ¢.—; # 0, the only possibility is

ck=c—k, for0<k<e,

proving (6).
To prove (7), assume d > ¢ > 2 and r > 2. We first notice that it is enough
to prove that W D I;(H) for some hyperplane H. For if so, letting

Wy = im(W — H°(0Og(d))),
ik, 5 be the multiplication map
Wr ® H*(On (k) = HO(On(d + k)

and
¢k, g = codim(im pg ),

we have the following commutative diagram with exact rows and columns:

0 0 0
! 1 !

(10) 0 — WnIyH) — W — Wh -0
! 1 !

0 — I,(H) — H9(Op-(d)) — H°(Og(d) —0

If W D I4(H), then ¢y = ¢, and similarly cx g = ¢ for all & > 0. If
r = 2, we are already done. If not, then by induction on r, Wy contains the
ideal of some line L C H. Then W D I4(L). Thus we are reduced to showing
W D I;(H) for some hyperplane H.
Let P™" be the dual projective space and J € P” x P"" the incidence
correspondence
J={(P,H)|PeH}

N
9
P P’
be the projections. On P’ x P"", we have the exact sequence

(11) 0— f*Opr(—-1)® ¢*Opr(—1) = Opryprr — O3 — 0.

Let
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On P7, the evaluation map
W ® Opr — Op-(d) — 0

is surjective because W is base-point free. Its kernel is therefore a vector
bundle M fitting into an exact sequence

0—-M—WQ®Op- — Op-(d) — 0.
One readily sees that for k£ > 0,
H%(Op-(d+ k))/ im p = H' (M (k)).
Tensoring the sequence (11) with f*M(c — 1), we obtain the exact sequence
0— f"M(c-2)®g¢Opr(~1)> f*M(c—-1) - 0;® f*M(c—-1) — 0.
Pushing down by g, we get a long exact sequence
- = HY(M(c - 2)) ® Opr+(—1) = H'(M(c - 1)) ® Op
— R;* O;® f*M(c-1))—.
If he P” and H C P7 is the corresponding hyperplane, then
g0, ®0; ~0g
and thus
Hig'On®0; 8 f*M(c—1))=0 forq>2,
and
HY (O ®0;® f*M(c—1)) =0
& the multiplication map W ® H°(Og(c — 1))
— H°(Og(d+ c— 1)) is surjective.

Thus if ¢.—1,n# = 0 for every hyperplane H, then we obtain a surjective map
of sheaves ‘

HY(M(c - 2)) ® Opr- (=1) — HY(M(c—1))® Opr — 0
2 2

0%..(-1) Op.- 0

which is impossible for r > 2. Thus for some hyperplane H, c.—1,# # 0.
However, by the result on codimensions, this implies ¢y > ¢. Moreover, by
the diagram (10),

¢ =cg + codim(W N I4(H), I;(H)).
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We conclude that
codim(W N I4(H), I4,(H)) =0,

so W 2 Ij(H). This completes the inductive step and thus the proof of
Theorem 2.

Remark. In [5], it was shown that for W base-point free and of codimen-
sion ¢, the map u. is surjective. However, this result was used only in the case
¢ = d—3, where it may be deduced from Gotzmann’s result. Gotzmann’s the-
orem is quite strong and ought to have other interesting applications. More
generally, the standard monomial techniques of Macaulay, Gotzmann, Bayer,
and Stillman seem likely to be widely useful in a variety of questions of this
kind.

Returning to the proof of Theorem 1, let X, 5, W, F be as before. Ford > 3,
¢ =d — 3, we know by Theorem 2 that W D I;(L) for some line L. If Ly, Lo
are two distinct lines in P3, then

Id(L1)|L2= HO(OL2(d)) ifLinLy = o,
Io(Ly)|,,= H°(Or,(d)® Ip) i LinLy =P,

and thus if W 2 I4(L1) + I4{L2), then ¢ < 1. So for each S € ¥ there is a
unique line Lg such that W D I;(Lg). We thus have a natural map

r5G(2,4, S—Ls.

For each L € G(2,4), let £ = =~ 1(L). If £ is nonempty, then codim(Ez, T)
< 4. Choose an L with &1 # . Let W, C W be the pullback of T5(Xy) to
H°(Ops(d)). Choose S to be a general point of any component of £, so that
codim(Wg, W) < 4 and codim(W,, N I4(L), I;(L)) < 4 are locally constant on
31 near S.

Since W 2 J4(F), the restriction of J4(F) to L has codimension > d — 3
in H%(OL(d)). Since it is base-point free and

Ja(F)| = im(Ja-1(F)| ,@H(Or (1)) — H®(01(d)))

we conclude from Gotzmann’s theorem that
codim(Jy—1(F)|, H*(Op(d - 1))) > d — 2
and therefore
dim(Jd—l(F)lL) < 2.

Now, choose 'homogeneous coordinates (zg,- - ,23) for P2 so that L =
{z0 = 0,21 = 0}. Let
o = dim span(FglL,,F1|L)
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where F; = 0F/8z;. By choosing S generally on any component of 1, we
may assume « is locally constant near S. We must deal separately with the
cases a = 0,1, 2.

If « = 2, then by a linear change of coordinates preserving the fact L =
{20 = 0,2; = 0}, we may arrange that F2|L= 0 and F3|L= 0. Now

FIL::. (ZOFO‘L+ZIF1 ‘L+Z2F2!L+Z3F3IL)/d =0

so L C S and we are done, as now a general element of £ contains a line.
If a = 0, then the equations Fol ,=0and Fy | ;= 0 hold identically on the
component of £, containing S. Thus for all G € Wy,

GO'L: 0, G1|L= 0

Since W 2 I4(L), and codim(Wr,W) < 4, we know that G = 204 + 2B
belongs to Wi, for a codimension< 4 subspace of
{(A,B) | A,B € H°(Op-(d—1))}.
Now
Go|,=A|,=0, Gi|,=B|, =0 ifGeW,..
However,
{(4,B) | A,B € H°(Op-(d - 1)),A|,=0,B|, =0}

has codimension 2d, so codim(Wp,, W) > 2d. This is a contradiction for d > 3.

The last case is @ = 1. We now have locally near S on ¥ a family of
equations

(a0 (1) Fo(t) + a1(t) F1(2))|,= 0

as { varies ov.er 3. Differentiating in the direction corresponding to G € W,
at S, we have

ao(O)G0|L+al(O)G1 ‘L= —06(0)F0|L (11(0 F1 |L€ span(Fo|L, FIIL)

where t = 0 is the point of £; corresponding to S.
For G = zpA + 2, B, we have

ao(0)A|, +ay (O)BlLe span(Fp
ifGeWy. Sincea=1,

lLyFllL)

dimspan(FolL,F1|L) =1
and thus

{(4,B) | A,B € H*(Ops(d — 1)),a0(0)A| +a1(0)B| € span(Fo| , F1|,)}
has codimension d — 1. So
d—1 < codim(Wg NIg{L),I4(L)) < codim(Wr,W) < 4

which is a contradiction if d > 6.
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This reduces us to the case d = 5 and codim(Wyg N I;(L), I4(L)) = 4.
Let U = span(G*, G2%,G3,G*) be a 4-dimensional subspace of Wy, such that
G'|L, - ,G4|L are linearly independent. By a change of homogeneous coor-
dinates on P? keeping L = {29 = 0,2; = 0}, since & = 1, we may arrange
that F3|, = 0. This equation deforms to an equation

(ao(t)Fo‘(t) + - +ag(t)F(t)| =0

for t € Xz near S. If t = 0 corresponds to S, (ag(D), - ,as(0)) = (0,0,0,1).
Differentiating in the direction corresponding to G € W, we get

Ga|L€ Jd—l(F)|L-

In particular, since dim(Jy_1(F)|,) < 2, we may change the basis of U so
that G| =0 and G%|L = 0. Since 23, 23 are homogeneous coordinates on L,
we see that '

GIIL,G2|L€ span(25).

Thus some linear combination of G and G? restricts to zero on L, which
contradicts the assumption on U. This completes the proof of Theorem 1.

An interesting open problem concerns the case d = 5. Irreducible compo-
nents of X5 may have codimensions 2, 3, and 4. We have just shown that the
only component having codimension 2 consists of quintics containing a line.
One easily verifies that the quintics containing a plane conic gives a compo-
nent of s of codimension 3. Are there any others?* This relates to a problem
suggested by Joe Harris: although £ has countably many components, there
should be only finitely many whose codimension is smaller than the maximum
value (431).

I want to thank Joe Harris for some useful ideas, and for showing me his
joint work with Ciro Ciliberto, which gives an intriguing alternative approach
to proving Theorem 1 using a degeneration argument. I learned of the work
of Macaulay and Gotzmann through the generous aid of Dave Bayer, David
Eisenbud, and Tony Iarrobino.

References

[1] D. Bayer, The division algorithm and the Hilbert scheme, Thesis, Harvard University,
- 1982,
(2] J. Carlson, M. Green, P. Griffiths & J. Harris, Infinitesimal variations of Hodge structure,
I, Compositio Math. 50 (1983) 109-205.
[3] G. Gotzmann, Eine Bedingung fir die Flachheit und das Hilbertpolynom eines graduierten
Ringes, Math. Z. 158 (1978) 61-70.

*Added in proof. This has been solved by Claire Voisin in [8].



302 MARK L. GREEN

[4] M. Green, Koszul cohomology and the geometry of projective varieties. I, J. Differential
Geometry 20 (1984) 279-289.

[8] ——, A new proof of the explicit Noether-Lefschetz theorem, J. Differential Geometry, 27
(1988) 155-159.

[6] R. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978) 57-83.

[7] C. Voisin, Une précision du théoréme de Noether, Math. Ann., to appear.

[8] , Composantes du lieu de Noether-Lefschetz en degré cing, preprint,.

UNIVERSITY OF CALIFORNIA, LOS ANGELES





